- · 《语言研究》投稿方式[09/30]
- · 《语言研究》数据库收录[09/30]
- · 《语言研究》栏目设置[09/30]
- · 《语言研究》刊物宗旨[09/30]
- · 《语言研究》征稿要求[09/30]
LaBSE:一套支持109种语言的新语言不可知论内嵌模
作者:网站采编关键词:
摘要:据外媒报道,自transformer架构诞生以来,自然语言处理(NLP)和自然语言生成(NLG)领域就受益匪浅。Transformer模型如BERT及其衍生物已经被应用到一系列领域中,包括情绪分析和分类。近年来
据外媒报道,自transformer架构诞生以来,自然语言处理(NLP)和自然语言生成(NLG)领域就受益匪浅。Transformer模型如BERT及其衍生物已经被应用到一系列领域中,包括情绪分析和分类。近年来,为了让这些模型变得更加健全,相关人员付出了大量的努力,尤其是通过扩展蒙面语言模型(MLM)的预培训并将其跟翻译语言建模(TLM)结合起来从而使得模型变为语言不可知论。
尽管事实证明,这种MLM和TLM的联系有助于下游任务的微调,但截止到目前,它们还没有直接生成多语言句子嵌入,而这对于翻译任务是至关重要的。
考虑到这一点,谷歌的研究人员现在推出了一种多语言BERT嵌入模型,叫做“语言不可知论BERT句子嵌入(Language-agnostic BERT Sentence Embedding,简称LaBSE)”,它在一个单一模型上为109种语言生成语言不可知论的跨语言句子嵌入。简单地说,LaBSE将MLM和TLM预培训结合在一个12层transformer上,据悉,该转换器包含有500,000个带有使用双向双编码器完成的翻译排序任务的token。
为了训练这个模型,研究人员使用了170亿个单语句子和60亿对双语句子。一旦训练完成就会使用Tatoeba语料库对LaBSE进行评估,据悉,该模型的任务是利用余弦距离为给定的句子找到最近邻的翻译。
结果表明,即使在训练过程中没有数据可用的低资源语言上该模型也是有效的。除此之外,LaBSE还在多个并行文本或双语文本检索任务上建立了一个艺术新状态(SOTA)。具体地说,随着语言数量的增加,传统的模型如m~USE和LASER模型,其在平均精度上表现出比LaBSE更明显的下降。
据了解,LaBSE的潜在应用包括从网络中挖掘并行文本。研究人员则将其应用到CommonCrawl上,进而从LaBSE预处理和编码的77亿英语句子库中寻找潜在的翻译。有了这些嵌入,翻译模型显示出了极高的准确性,其分数达到了35.7和27.2。谷歌写道:“这跟目前在高质量并行数据上训练的先进模型只有几分之遥。”
现在,这个预训练模型可以在TensorFlow Hub找到。
文章来源:《语言研究》 网址: http://www.yyyjzzs.cn/zonghexinwen/2020/1010/347.html
上一篇:用农民的语言写农民的歌
下一篇:莫言说:朗读大益,孩子语言表达能力差,就从